Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 3, 2026
-
Free, publicly-accessible full text available December 25, 2025
-
Zhang, Z (Ed.)Free, publicly-accessible full text available December 1, 2025
-
We propose a novel framework for analyzing convergence rates of stochastic optimization algorithms with adaptive step sizes. This framework is based on analyzing properties of an underlying generic stochastic process; in particular, we derive a bound on the expected stopping time of this process. We utilize this framework to analyze the expected global convergence rates of a stochastic variant of a traditional trust-region method. Although traditional trust-region methods rely on exact computations of the gradient, Hessian, and values of the objective function, this method assumes that these values are available only up to some dynamically adjusted accuracy. Moreover, this accuracy is assumed to hold only with some sufficiently large—but fixed—probability without any additional restrictions on the variance of the errors. This setting applies, for example, to standard stochastic optimization and machine learning formulations. Improving upon prior analysis, we show that the stochastic process defined by the trust-region method satisfies the assumptions of our proposed general framework. The stopping time in this setting is defined by an iterate satisfying a first-order accuracy condition. We demonstrate the first global complexity bound for a stochastic trust-region method under the assumption of sufficiently accurate stochastic gradients. Finally, we apply the same framework to derive second-order complexity bounds under additional assumptions. Previousmore » « less
-
We propose a novel framework for analyzing convergence rates of stochastic optimization algorithms with adaptive step sizes. This framework is based on analyzing properties of an underlying generic stochastic process; in particular, we derive a bound on the expected stopping time of this process. We utilize this framework to analyze the expected global convergence rates of a stochastic variant of a traditional trust-region method. Although traditional trust-region methods rely on exact computations of the gradient, Hessian, and values of the objective function, this method assumes that these values are available only up to some dynamically adjusted accuracy. Moreover, this accuracy is assumed to hold only with some sufficiently large—but fixed—probability without any additional restrictions on the variance of the errors. This setting applies, for example, to standard stochastic optimization and machine learning formulations. Improving upon prior analysis, we show that the stochastic process defined by the trust-region method satisfies the assumptions of our proposed general framework. The stopping time in this setting is defined by an iterate satisfying a first-order accuracy condition. We demonstrate the first global complexity bound for a stochastic trust-region method under the assumption of sufficiently accurate stochastic gradients. Finally, we apply the same framework to derive second-order complexity bounds under additional assumptions.more » « less
-
The goal of this paper is to provide a unifying view of a wide range of problems of interest in machine learning by framing them as the minimization of functionals defined on the space of probability measures. In particular, we show that generative adversarial networks, variational inference, and actor-critic methods in reinforcement learning can all be seen through the lens of our framework. We then discuss a generic optimization algorithm for our formulation, called probability functional descent (PFD), and show how this algorithm recovers existing methods developed independently in the settings mentioned earlier.more » « less
-
We introduce a class of unbiased Monte Carlo estimators for multivariate densities of max-stable fields generated by Gaussian processes. Our estimators take advantage of recent results on the exact simulation of max-stable fields combined with identities studied in the Malliavin calculus literature and ideas developed in the multilevel Monte Carlo literature. Our approach allows estimating multivariate densities of max-stable fields with precision eps at a computational cost of order O(eps{−2}*logloglog(1/eps)).more » « less
An official website of the United States government

Full Text Available